Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Pharmacol Ther ; 247: 108445, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20240821

ABSTRACT

Allergic diseases arise from a complex interplay between immune system and environmental factors. A link between the pathogenesis of allergic diseases and type 2 immune responses has become evident, with conventional and pathogenic type 2 helper T (Th2) cells involved in both. Recently, there has been a significant development in therapeutic agents for allergic diseases: IL-5 and IL-5 receptor antagonists, Janus kinase (JAK) inhibitors, and sublingual immunotherapy (SLIT). Mepolizumab, an IL-5, and Benralizumab, an IL-5 receptor antagonist, modulate eosinophilic inflammation mediated by IL-5-producing Th2 cells. Delgocitinib shows that JAK-associated signaling is essential for the inflammatory reaction in atopic dermatitis, one of the common allergic diseases. SLIT has a significant effect on allergic rhinitis by reducing pathogenic Th2 cell numbers. More recently, novel molecules that are involved in pathogenic Th2 cell-mediated allergic diseases have been identified. These include calcitonin gene-related peptide (CGRP), reactive oxygen species (ROS) scavenging machinery regulated by the Txnip-Nrf2-Blvrb axis, and myosin light chain 9 (Myl9), which interacts with CD69. This review provides an updated view of the recent research on treatment of allergic diseases and their cause: conventional and pathogenic Th2 cells.


Subject(s)
Dermatitis, Atopic , Hypersensitivity , Humans , Cytokines , Interleukin-5/therapeutic use , Hypersensitivity/drug therapy , Th2 Cells
2.
Front Immunol ; 13: 1001198, 2022.
Article in English | MEDLINE | ID: covidwho-2326316

ABSTRACT

Background: There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. Methods: This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. Results: Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-ß), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. Conclusions: It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.


Subject(s)
COVID-19 , Humans , Programmed Cell Death 1 Receptor , SARS-CoV-2 , Interleukin-10 , Interleukin-15 , Interleukin-17 , Interleukin-13 , Tumor Necrosis Factor-alpha , Cross-Sectional Studies , Critical Illness , Ligands , Interleukin-2 , Interleukin-4 , Interleukin-5 , Interleukin-7 , Adaptive Immunity , HLA-DR Antigens , Interleukin-23 , Inflammation Mediators , Transforming Growth Factor beta , Immunoglobulins
3.
Front Immunol ; 14: 1134178, 2023.
Article in English | MEDLINE | ID: covidwho-2318745

ABSTRACT

Background: The drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome represents a severe hypersensitivity reaction. Up-to-date treatment is based on withdrawal of medication, supportive care, and immunosuppression using high-dose corticosteroid (CS) therapy. However, evidence-based data are lacking regarding second-line therapy for steroid-resistant or steroid-dependent patients. Objectives: We hypothesize that the interleukin (IL)-5 axis plays a critical role in the pathophysiology of DRESS; hence, inhibition of this signaling pathway could offer a potential therapy for steroid-dependent and/or steroid-resistant cases, and it may offer an alternative to CS therapy in certain patients more prone to CS toxicity. Methods: Herein, we collected worldwide data on DRESS cases treated with biological agents targeting the IL-5 axis. We reviewed all cases indexed in PubMed up to October 2022 and performed a total analysis including our center experience with two additional novel cases. Results: A review of the literature yielded 14 patients with DRESS who were treated with biological agents targeting the IL-5 axis as well as our two new cases. Reported patients are characterized by a female-to-male ratio of 1:1 and a mean age of 51.8 (17-87) years. The DRESS-inducing drugs, as expected from the prospective RegiSCAR study, were mostly antibiotics (7/16), as follows: vancomycin, trimethoprim-sulfamethoxazole, ciprofloxacin, piperacillin-tazobactam, and cefepime. DRESS patients were treated with anti-IL-5 agents (mepolizumab and reslizumab) or anti-IL-5 receptor (IL-5R) biologics (benralizumab). All patients have clinically improved under anti-IL-5/IL-5R biologics. Multiple doses of mepolizumab were needed to achieve clinical resolution, whereas a single dose of benralizumab was often sufficient. Relapse was noted in one patient receiving benralizumab treatment. One patient receiving benralizumab had a fatal outcome, although mortality was probably related to massive bleeding and cardiac arrest due to coronavirus disease 2019 (COVID-19) infection. Conclusion: Current treatment guidelines for DRESS are based on case reports and expert opinion. Understanding the central role of eosinophils in DRESS pathogenicity emphasizes the need for future implementation of IL-5 axis blockade as steroid-sparing agents, potential therapy to steroid-resistant cases, and perhaps an alternative to CS treatment in certain DRESS patients more prone to CS toxicity.


Subject(s)
Drug Hypersensitivity Syndrome , Eosinophilia , Interleukin-5 , Female , Humans , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Drug Hypersensitivity Syndrome/diagnosis , Drug Hypersensitivity Syndrome/drug therapy , Drug Hypersensitivity Syndrome/etiology , Eosinophilia/drug therapy , Eosinophilia/complications , Prospective Studies , Interleukin-5/metabolism
4.
J Interferon Cytokine Res ; 42(10): 542-549, 2022 10.
Article in English | MEDLINE | ID: covidwho-2284705

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected the entire world, and has a variety of clinical presentations. The aim of this study is to determine the relationships of fecal cytokines and markers with the symptoms and prognosis of children with COVID-19 infection, and to identify noninvasive markers during follow-up. In a cohort of 40 COVID-19-positive children and 40 healthy controls, fecal cytokines and markers were examined in stool samples. A binary logistic model was used to assess the potential of cytokines as risk factors for hospitalization. Odds ratios (ORs) with 95% confidence intervals (CIs) were reported. A P-value <0.05 was accepted as statistically significant. Levels of fecal lysozyme, myeloperoxidase, hemoglobin, and interleukin-5 (IL-5) (P < 0.05) were significantly higher among the patients than controls. In a logistic regression analysis, fecal IL-2 (OR = 3.83; 95% CI: 1.44-15.92), IL-4 (OR = 2.96; 95% CI: 1.09-12.93), IL-5 (OR = 4.56; 95% CI: 1.18-27.88), IL-10 (OR = 2.71 95% CI: 1.19-7.94), interferon-gamma (IFN-γ) (OR = 4.03; 95% CI: 1.44-15.73), IFN-α (OR = 3.02; 95% CI: 1.08-11.65), calcium-binding protein B S100 (S100 B) (OR = 4.78; 95% CI: 1.31-27.82), neutrophil elastase (NE) 2 (OR = 4.07; 95% CI: 1.17-19.69), and matrix metalloproteinase 1 (MMP-1) (OR = 3.67; 95% CI: 1.1-18.82) levels were significantly higher in hospitalized patients with COVID-19 infection than outpatients. We demonstrated that various fecal cytokines and markers were increased in patients who had COVID-19. Fecal IL-2, IL-4, IL-5, IL-10, IFN-γ, IFN-α, S100 B, NE, and MMP-1 levels were significantly elevated in hospitalized patients. We suggest that the fecal and serum levels of cytokines could be used to predict the prognosis of COVID-19 disease, although more studies are needed to confirm this.


Subject(s)
COVID-19 , Cytokines , Child , Humans , Cytokines/metabolism , Interleukin-5/metabolism , Matrix Metalloproteinase 1/metabolism , Interleukin-10 , Leukocyte Elastase/metabolism , Peroxidase/metabolism , Muramidase/metabolism , Interferon-gamma , Interleukin-4 , Interleukin-2 , Biomarkers , Prognosis , Interferon-alpha/metabolism , Calcium-Binding Proteins
5.
J Med Virol ; 95(2): e28477, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173235

ABSTRACT

To analyze the dynamic changes of renal function longitudinally and investigate the cytokine profiles at 6 months in patients with Omicron COVID-19. Forty-seven patients with a proven diagnosis of Omicron COVID-19 from January to February 2022 attended a 6-month follow-up after discharge at Tianjin First Central Hospital. The demographic parameters, clinical features, and laboratory indexes were collected during hospitalization and 6 months after discharge. The serum cytokine levels at 6 months were also assessed. Patients were grouped according to with or without kidney involvement at admission. The levels of serum creatinine and estimated glomerular filtration rate (eGFR) were all normal both in the hospital and at follow-up. Whereas, compared with renal function in the hospital, serum creatinine levels at 6 months increased remarkably; meanwhile, eGFR decreased significantly in all patients. The serum levels of interleukin (IL)-2, IL-4, IL-5, IL-6, IL-10, and TNF-α and IFN-γ significantly decreased and TGF-ß remarkably increased in the kidney involvement group. The serum levels of IL-2 and IL-5 were positively correlated with age; contrarily, TGF-ß showed a negative correlation with aging. The younger was an independent risk factor of the higher TGF-ß levels. Omicron patients showed a decline in renal function at follow-up, reflecting the trend of CKD. Serum cytokine profiles were characterized with the majority of cytokines decreased and TGF-ß increased in the kidney involvement group; the latter may be used as a sign of CKD. The tendency of CKD is one of the manifestations of long COVID and deserves attention.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Humans , Cytokines , Creatinine , Post-Acute COVID-19 Syndrome , Interleukin-5 , Transforming Growth Factor beta , Glomerular Filtration Rate , Kidney/physiology
6.
Front Immunol ; 13: 988479, 2022.
Article in English | MEDLINE | ID: covidwho-2065517

ABSTRACT

Background: The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods: Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results: We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein-protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor-gene interactions, DEG-microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion: We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.


Subject(s)
Asthma , COVID-19 , MicroRNAs , Animals , Asthma/genetics , Biomarkers, Tumor/genetics , COVID-19/genetics , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Interleukin-13/genetics , Interleukin-5/genetics , Mice , MicroRNAs/genetics , Systems Biology , Transcription Factors/genetics
7.
Cancer Control ; 29: 10732748221130964, 2022.
Article in English | MEDLINE | ID: covidwho-2053689

ABSTRACT

OBJECTIVES: This study aimed to demonstrate potential translation of pre-clinical studies to a home-based exercise intervention in mediating inflammatory cytokine markers and tumor progression in men under active surveillance for prostate cancer. METHODS: A 2-arm randomized control parallel group design was used. The exercise intervention consisted of 24 weeks of an aerobic and resistance home-based exercise program and results were compared to a waitlist control group. Data were collected at baseline and end of study for eotaxin, interferon-γ (INF-γ), interleukin-12 (IL-12), interleukin-1α (IL-1α), interleukin-5 (IL-5), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and vascular endothelial growth factor (VEGF), distanced walked during a 6-minute walk test (6MWT), body mass index, and health-related quality of life. RESULTS: Non-significant decreases were observed in all biomarkers, especially VEGF (pre: 125.16 ± 198.66, post: 80.29 ± 124.30, P = .06) and INF-γ (pre: 152.88 ± 312.71, post: 118.93 ± 158.79, P = .08), in the intervention group; only IL- α (pre: 332.15 ± 656.77, post: 255.12 ± 502.09, P = .20) decreased in the control group while all other biomarkers increased from baseline to end of study. A non-significant increase in 6MWT distance was observed in the intervention group, while a decrease was seen in the control group. Significant decreases in physical function, emotional wellbeing, and total composite scale on the FACIT-F were observed in the intervention group, possibly due to the isolation restrictions of COVID-19. Physical function on the SF-36 significantly increased in the control group. CONCLUSIONS: Future studies with powered samples are needed to confirm the trends observed for inflammatory biomarkers and functional fitness.


Subject(s)
COVID-19 , Prostatic Neoplasms , Biomarkers , Exercise Therapy , Humans , Interferon-gamma , Interleukin-12 , Interleukin-1alpha , Interleukin-5 , Interleukin-6 , Male , Pilot Projects , Prostatic Neoplasms/therapy , Quality of Life , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A , Watchful Waiting
8.
Sci Rep ; 12(1): 7225, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1890252

ABSTRACT

Tear fluid cytokine levels may serve as biomarkers of innate immune system response against SARS-CoV-2 infection. Therefore, our aim was to analyze panel of selected inflammatory cytokines in tears of COVID-19 patients in relation to presence of SARS-CoV-2 viral load in conjunctival secretions. In this study concentrations of TNF-α, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12 p70, GM-CSF, and IFN-γ were determined by a magnetic bead assay in tear film collected from 232 symptomatic COVID-19 patients. SARS-CoV-2 ocular infection was confirmed based on positive conjunctival swab-based RT-PCR testing. Viral RNA in conjunctival sac was detected in 21 patients (9%). No relation between presence and the duration of ophthalmic symptoms and SARS-CoV-2 infection detected in conjunctival secretions was found. The tear film concentrations of IFN-γ, TNF-α, IL-5, IL-8 and GM-CSF were found to be significantly greater among patients with positive conjunctival swab results as compared to the group negative for SARS-CoV-2 in conjunctival sac. Our current data depict a group of inflammatory mediators in human tears, which may play a significant role in ocular pathology of SARS-CoV-2 conjunctival infection.


Subject(s)
COVID-19 , Conjunctiva , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Interleukin-5 , Interleukin-8 , SARS-CoV-2 , Tears , Tumor Necrosis Factor-alpha
11.
Eur Rev Med Pharmacol Sci ; 24(23): 12536-12544, 2020 12.
Article in English | MEDLINE | ID: covidwho-995014

ABSTRACT

OBJECTIVE: We aimed to study the dynamics of cytokines and lymphocyte subsets and their correlation with the prognosis of patients with severe COVID-19. PATIENTS AND METHODS: The lymphocyte subsets and cytokines of 31 patients with severe COVID-19 (7 deaths and 24 survivals) were longitudinally analyzed. RESULTS: The mean age of enrolled patients was 64 years, 24 (77.4%) patients were men, and 23 (74.2%) patients had comorbidities. Compared with survival group, the death group showed significant and sustained increases in the levels of IL-6, IL-8, and IL-10 from baseline to 28 days after admission (all p<0.05). No significant differences were observed in the levels of TNF-α, IL-1b, IL-2, IL-4, IL-5, IL-12P70, IL-17, IFN-α, and IFN-γ between the death group and survival group during the follow-up (all p>0.05). The absolute counts of CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD45+ T cells were lower in both survival group and death group patients from hospital admission to 3 days after admission, and gradually recovered in 4 to 35 days in the survival group, but continually stayed at low levels in the death group during the follow-up. CONCLUSIONS: The kinetic changes of cytokines and lymphocyte subsets are related with the prognosis of patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , T-Lymphocyte Subsets/immunology , Aged , Aged, 80 and over , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Humans , Interferon-alpha/immunology , Interleukin-10/immunology , Interleukin-12/immunology , Interleukin-17/immunology , Interleukin-1beta/immunology , Interleukin-2/immunology , Interleukin-4/immunology , Interleukin-5/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocyte Common Antigens/immunology , Longitudinal Studies , Lymphocyte Count , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
12.
Cytokine ; 138: 155365, 2021 02.
Article in English | MEDLINE | ID: covidwho-917276

ABSTRACT

The hyper-inflammatory response is thought to be a major cause of acute respiratory distress syndrome (ARDS) in patients with COVID-19. Although multiple cytokines are reportedly associated with disease severity, the key mediators of SARS-CoV-2 induced cytokine storm and their predictive values have not been fully elucidated. The present study analyzed maximal and early (within 10 days after disease onset) concentrations of 12-plex cytokines in plasma. We found consistently elevated plasma levels of IL-6, IL-8 and IL-5 in patients who were deceased compared with those who had mild/moderate or severe disease. The early plasma concentrations of IFN-a and IL-2 positively correlated with the length of the disease course. Moreover, correlation network analysis showed that IL-6, IL-8, and IL-5 located at the center of an inter-correlated cytokine network. These findings suggested that IL-8, IL-6, IL-5 might play central roles in cytokine storms associated with COVID-19 and that the early detection of multiple plasma cytokines might help to predict the prognosis of this disease.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/pathology , Cytokines/blood , Respiratory Distress Syndrome/pathology , SARS-CoV-2/immunology , Aged , Correlation of Data , Female , Humans , Interferon-alpha/blood , Interleukin-2/blood , Interleukin-5/blood , Interleukin-6/blood , Interleukin-8/blood , Male , Middle Aged , Prognosis , Retrospective Studies , Severity of Illness Index
13.
Cytokine ; 137: 155323, 2021 01.
Article in English | MEDLINE | ID: covidwho-849208

ABSTRACT

Cytokine dysregulation is the proposed mechanism for Coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the serum levels of interferon (IFN)-γ, interleukin (IL)-5, IL-8, Il-9, IL-17, TGF-ß and IFN-γ in patients infected with SARS-CoV-2. The study was conducted between 63 adult patients with COVID-19 and compared with 33 age and gender-matched healthy subjects as controls. The age range in both groups was 50-70 years. The patients were classified into mild group (33 patients) and severe group (30 patients). Serum samples were collected from all participants and tested for the cytokine levels by ELISA (enzyme-linked immunosorbent assay) method. Statistical analysis was performed using the one-way ANOVA. The mean serum levels of IFN-γ, TGF-ß, IL-17 and IL-8 in the COVID-19 patients were significantly higher than those observed in the control group. A comparison of between the mild and severe groups showed significant differences in TGF-ß levels. The mean concentration of serum IL-5 and IL-9 in patients with COVID-19 did not differ from those in the control group. Systemic IL-17 levels correlated positively and significantly with TGF-ß in patients with COVID-19. Th1 (IFN-γ), Treg (TGF-ß), and Th17 (IL-17) cytokines concentration were increased in COVID-19 patients. Interferon-γ and IL-17 are involved in inducing and mediating proinflammatory responses. Our data suggest that TGF-ß can be used as a predictive factor of disease severity in patients with COVID-19.


Subject(s)
COVID-19/blood , COVID-19/diagnosis , Cytokines/blood , Aged , Biomarkers/blood , COVID-19/physiopathology , Female , Humans , Inflammation/blood , Interferon-gamma/blood , Interleukin-17/blood , Interleukin-5/blood , Interleukin-8/blood , Interleukin-9/blood , Male , Middle Aged , Severity of Illness Index , Transforming Growth Factor beta/blood
14.
Nature ; 584(7821): 463-469, 2020 08.
Article in English | MEDLINE | ID: covidwho-677004

ABSTRACT

Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytokines/analysis , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Adult , Aged , Aged, 80 and over , COVID-19 , Cluster Analysis , Cytokines/immunology , Eosinophils/immunology , Female , Humans , Immunoglobulin E/analysis , Immunoglobulin E/immunology , Interleukin-13/analysis , Interleukin-13/immunology , Interleukin-5/analysis , Interleukin-5/immunology , Male , Middle Aged , Pandemics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL